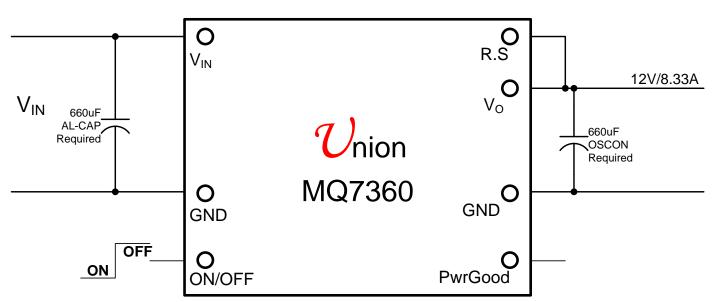
MQ7360T/S

Non-isolated wide input, Buck-Boost 100W DC-DC Power Module

Applications

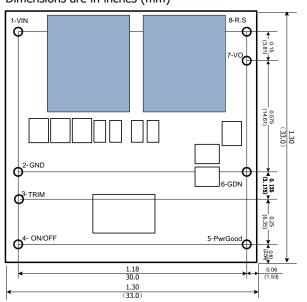
- □ Automotive Systems
- □ Distributed DC Power Systems
- □ High Power Battery-Operated Devices
- □ Industrial Control

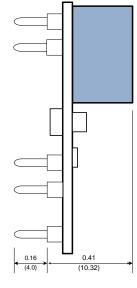

Features

- Wide input voltage: 6V ~ 36V
- Full load operating voltage: 9~28V
- Output power up to 100W
- Output voltage ripple:100mV_{PP}(12V output)
- High Efficiency 96%(12Vin/12Vout with 100W load)
- Overcurrent /shortcircuit protection continuous,
 Re-startup automatically after fault release
- Remote on/off control-negative logic
- > Input under-/over-voltage protection -- shutdown
- High reliability: designed to meet 20 million hour MTBF
- Minimal space on PCB:
- Compact size:
 - □ 33.0 mm x 33.0 mm x 10.3 mm or
 - □ 1.3 in x 1.3 in x 0.4 in
- No derating to +55°C, inside closed box
- UL/IEC/EN60950 compliant
- RoHS Compliant available

Description

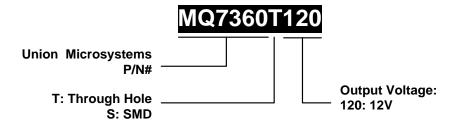
The **MQ7360** Series Power Modules are non-isolated dc-dc converters that operate over a wide input voltage range of 6Vdc to 36Vdc and provide a precisely (2%) regulated dc output. Such a module is suitable to applications with unstable 12V or 24V power supply. The modules have a maximum output power up to 100W at typical full-load efficiency over 94%.




Performance Specifications (at T_A=+25℃)

	Input V _{IN} Range	Output			Efficiency	
Model	(V)	Vout (V)	I _{OUT.MAX} (A)	Regulation		(%)
				Line (%)	Load (%)	(70)
MQ7360T120	626	12	0.22	0.5	0.5	06
MQ7360S120	6~36	12	8.33	0.5	0.5	96

Mechanical Specifications


Dimensions are in inches (mm)

PIN	Description	
1	V _{IN}	
2	GND	
3	TRIM	
4	ON/OFF	
5	PwrGood	
6	GND	
7	V _{OUT}	
8	Remote Sense	

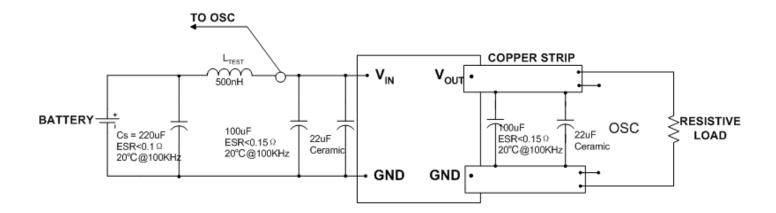
Ordering Information

Absolute Maximum Ratings

Note: These are stress ratings. Exposure of devices to any of these conditions may adversely affect long-term reliability. Proper operation under conditions other than those listed in the Performance Specifications Table is not implied.

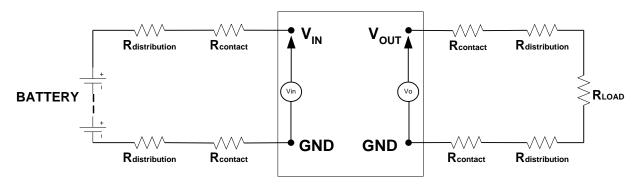
Parameter	Symbol	Min	Max	Unit
Input Voltage	V _{IN}	-0.3	40	V
Storage Temperature	T _{STG}	-40	125	°C

MQ7360T/S120 Electrical Specifications: $(T_A=+25^{\circ}C)$


Parameter	Condition	Symbol	Min	Тур.	Max	Unit
Input Voltage Range		V _{IN}	6		36	V
Output Current	V _{IN} =6~36V	lo	0		8.33	Α
Output Voltage Set point	100% load, V _{IN} =V _{IN.MIN}	ΔVο	-2		+2	%
Output Trim Range Line Regulation Load Regulation	See Performand	e Specificat	ions from p	age 7~8		
Temperature Regulation	T _A = T _{A.MIN} To T _{A.MAX}	-		0.4		%V _{O.SET}
Output Ripple and Noise Voltage	lo=5A,0~20MHz (<i>Detail Please see Ripple Figures, Page 7~8</i>)					
Transient Response						

General Specifications

Parameter	Condition	Symbol	Min	Тур.	Max	Unit
Minimum Output Capacitive	8.33A resistive load			660		uF
Overcurrent Protection				10.3		Α
Output short-circuit current (average)	All			10.3		А
Under Voltage Lockout	Rising			5.7		V
Trip Level	Falling			5.2		V
Over-voltage Lockout Trip Level				39		V
Logic High (Module OFF)		V _{IH}	2.5		10	V
Logic Low (Module ON)		V _{IL}	-0.3		1	V
Start-up blanking time		T _{BLK}			30	mS
Start-up Time	8.33A resistive load, no external output capacitors			15		mS
Switching Frequency		Fo		200		kHz
Operating Temperature	Natural convection, no forced air flow		-40		85	°C
Vibration	8.33 Axes, 5 Min Each		10~55Hz, 0.35mm, 5g			
	8.33 Axes, 6 Times Each	Peak De	Peak Deviation 300g, Settling Time 6mS			
MTBF		5,000,000		Hour		


Test Configurations

Test setup for input noise, output noise and ripple

Note:

Output noise is measured with 0.1μ F ceramic capacitor connected at the output. OSC measurement should be made using a BNC socket. Position the load between 50mm and 75mm (2in. and 3in) from the tested module.

Test setup for efficiency

Note:

All voltage measurements must be taken at the module's terminals, as shown above. If sockets are needed, Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance.

Technical Notes

Input Voltage Range

The MQ7360 Series can be used in a wide variety of applications, esp. unregulated 12V or 24V power supply bus system. So, when system voltage transferred from unregulated input to regulated 12V, no redesign needed which simplifies design, speeds the time to market and adds flexibility to system.

Return Current Paths

The MQ7360 Series is non-isolated DC/DC converters. Their input and output shares same Common pins. To the extent possible with the intent of minimizing ground loops, input/output return current should be directed the Common pins as short as possible.

I/O Filtering

All the specifications of the MQ7360 Series are tested and specified without output capacitors. However, certain input capacitors are necessary to improve the power modules' operating conditions and to reduce the ac impedance. For example, under some conditions, the power modules can't normally start up when fully loaded due to the high ac-impedance input source. External input capacitors serve primarily as energy-storage devices. They should be added close to the input pins of the MQ7360 and selected for bulk capacitance (at appropriate frequencies), low ESR, and high rms-ripple-current ratings. All external capacitors should have appropriate voltage ratings. To reduce the amount of ripple current fed back to the input supply (input reflected-ripple current), an external L-C filter can be added with the inductance as close to the power module as possible.

MQ7360's output ripple and transient response can be improved with the increasing output capacitance. When using output capacitors, take care that the total output capacitance does not exceed MQ7360's Maximum Capacitive Load to avoid the module's protection condition in the start-up.

When an external L-C filter is added to reduce ripple on load, for best results, the filter components should be mounted close to the load circuit rather than the power module.

When testing the relationship between external capacitors and output voltage noise, the oscilloscope's probe should be applied to the module's end directly with scope probe ground less than 10mm in length.

Input Fusing

The MQ7360 Series is not internally fused. Certain applications and/or safety agencies may require the installation of fuses at the inputs of power conversion components. The selection of the fuses should conform to the following:

- 1. The fuse value should be selected to be greater than the module's maximum input current, which occurs at the minimum input voltage.
 - 2. Use either slow-blow or normal-blow fuses.
 - 3. Both input traces must be capable of carrying a current of 1.5 times the value of the fuse without opening.

Safety Considerations

MQ7360's are non-isolated DC/DC converters. In general, all DC-DC's must be installed in compliance with relevant safety-agency specifications (usually UL/IEC/EN60950). In particular, for a non-isolated converter's output voltage to meet SELV (safety extra low voltage) requirements, its input must be SELV compliant. If the output needs to be ELV (extra low voltage), the input must be ELV.

ON/OFF Control

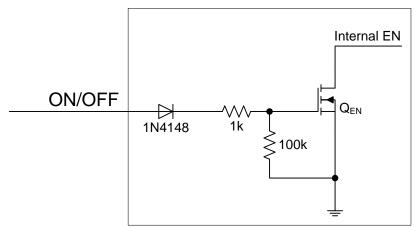


Fig1. Remote ON/OFF circuit inside power module

The MQ7360 power modules feature an On/Off pin for remote On/Off operation. If not using the remote On/Off pin, leave the pin open (module will be ON). Refer to Fig1, the On/Off pin signal is referenced to Ground. Applying a standard TTL logic level to this PIN can switch module on and off. During a logic-low when the transistor Q_{EN} inside power module is in the OFF state, the power module is ON and the maximum Von/off of the module is 1V. During a logic-high when Q_{EN} is in the active state, the power module is OFF.

Input Under-voltage Protection

MQ7360 Series products include input under-voltage protection. If the input voltage is lower than under-voltage trip level, the power module will be latched off without output. For avoiding any oscillating, the trip level is with 0.5V hysteresis.

MQ7360T/S

Input Overvoltage Protection

MQ7360 Series products include input over-voltage protection. If the input voltage is higher than over-voltage trip level, the power module will be latched off without output.

Output Overvoltage Protection

MQ7360 Series products do not incorporate output overvoltage protection. If the operating circuit requires protection against abnormal output voltage, voltage-limiting circuitry must be provided external to the power module.

Output Overcurrent Protection (OCP)

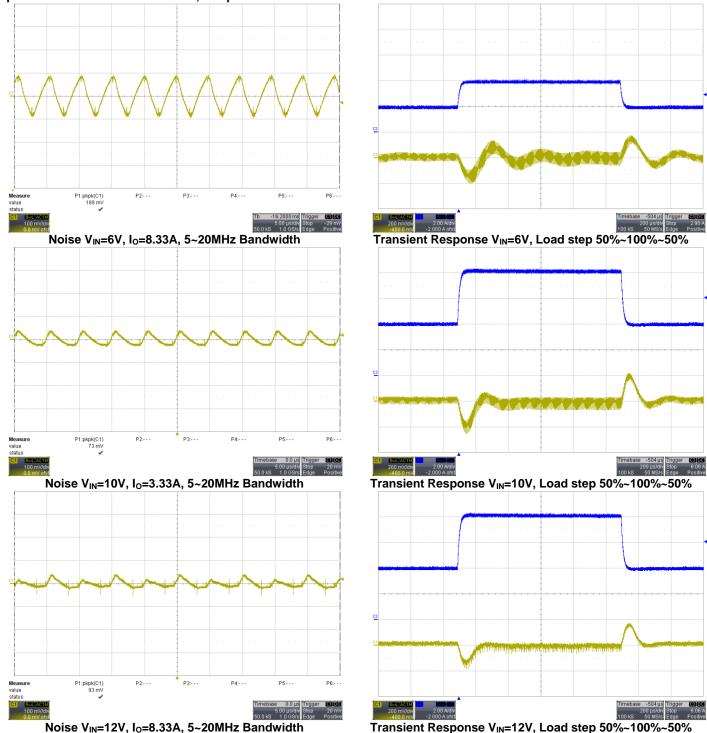
MQ7360 incorporates overcurrent and short circuit protection. If the load current exceeds the overcurrent protection setpoint, the MQ7360's internal overcurrent-protection circuitry immediately turns off the module, which then goes into Hiccup mode. The unit operates normally once the output current is brought back into its specified range. The typical average output current during hiccup is 1~2A.

Caution: Be careful never to operate MQ7360 in a "heavy overload" condition that is between the rated output current and the overcurrent protection setpoint. This can cause permanent damage to the components.

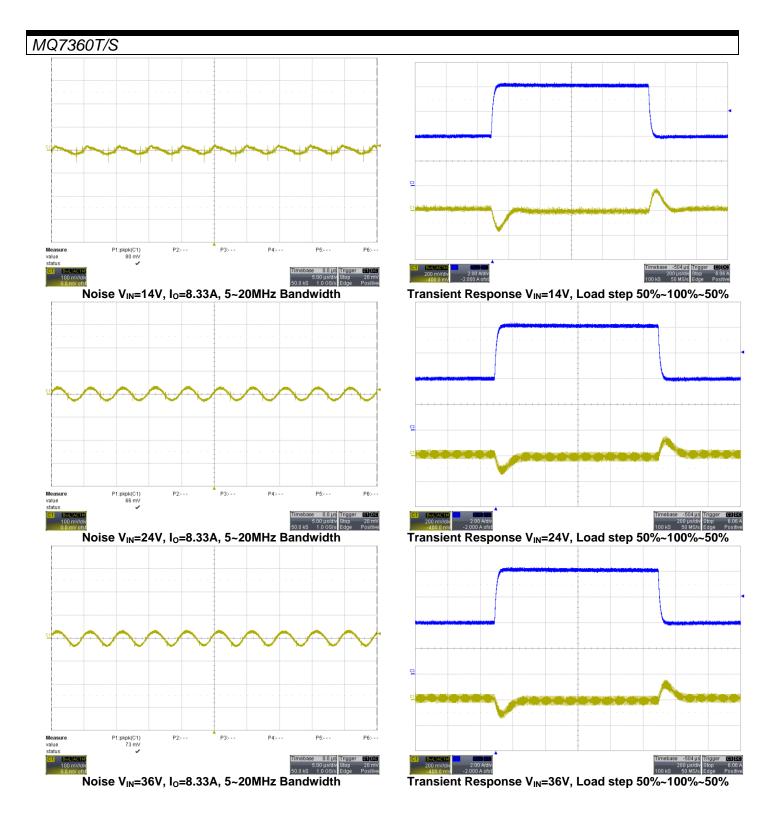
Overtemperature Protection (OTP)

To ensure MQ7360's reliability and avoid damaging its internal components, and to avoid permanently damaging components, the surface temperature of MQ7360's power components, esp. of the MOSFET should be below 120°C.

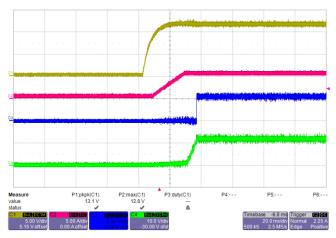
Note: The overtemperature protection may be issued when MQ7360 operates in a "heavy overload" condition for a long time. Thus, the air flow should be improved.

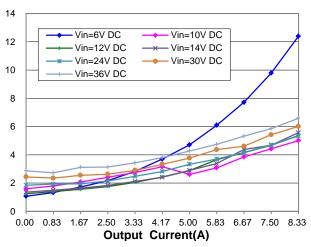

Power Good

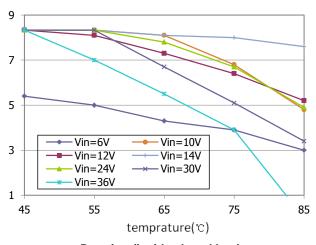
MQ7360's modules provide a Power Good (PwrGood) signal to indicate that the output voltage is within the regulation limits of the power module. The PwrGood signal will be de-asserted to a low state if any condition such as overtemperature, overcurrent or loss of regulation occurs that would result in the output voltage going ±10% outside the set-point value. The PwrGood terminal is internally pulled-up and provides a voltage of 5.5V, when asserted, thus eliminating the need for an external source and pull-up resistor.

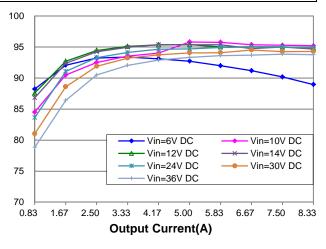

Typical Characteristics – output set to 12V General conditions:

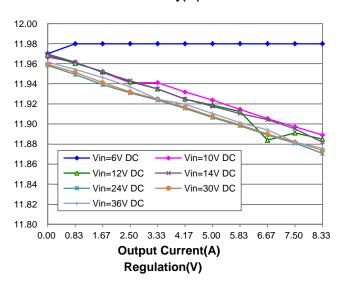
Input filter 330uF/50V*2 AL-CAP, Output filter 330uF/25V*2 POSCAP




www.union-pwr.com



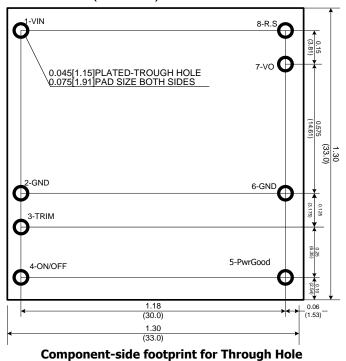

Startup, V_{IN} =12V, 5~20MHz Bandwidth (C1: V_{IN} , C2: Load current, C3: PwrGood, C4: V_{OUT})

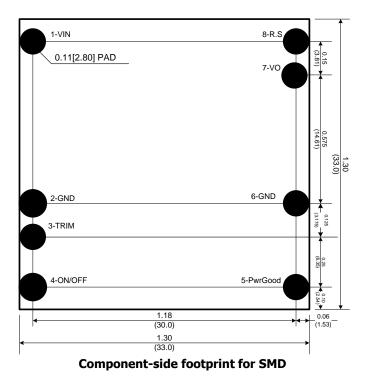

Power Dissipation(W)

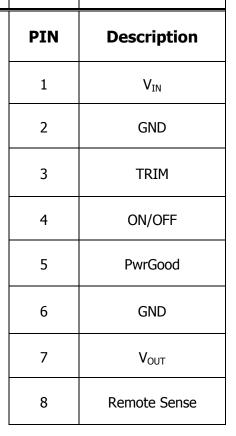
Derating (inside closed box)

Efficiency(%)

TBD


Continuous load capability(%Io.MAX) vs. input voltage(V)


www.union-pwr.com


Recommended Hole Pattern

Dimensions are in inches (millimeters)

PIN	Description
1	V_{IN}
2	GND
3	TRIM
4	ON/OFF
5	PwrGood
6	GND
7	V _{out}
8	Remote Sense

Application Notes

